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A B S T R A C T

Automatic tracking of viral and intracellular structures displayed as spots with varying sizes in fluorescence
microscopy images is an important task to quantify cellular processes. We propose a novel probabilistic
tracking approach for multiple particle tracking based on multi-detector and multi-scale data fusion as well
as Bayesian smoothing. The approach integrates results from multiple detectors using a novel intensity-based
covariance intersection method which takes into account information about the image intensities, positions,
and uncertainties. The method ensures a consistent estimate of multiple fused particle detections and does
not require an optimization step. Our probabilistic tracking approach performs data fusion of detections from
classical and deep learning methods as well as exploits single-scale and multi-scale detections. In addition,
we use Bayesian smoothing to fuse information of predictions from both past and future time points. We
evaluated our approach using image data of the Particle Tracking Challenge and achieved state-of-the-art
results or outperformed previous methods. Our method was also assessed on challenging live cell fluorescence
microscopy image data of viral and cellular proteins expressed in hepatitis C virus-infected cells and chromatin
structures in non-infected cells, acquired at different spatial–temporal resolutions. We found that the proposed
approach outperforms existing methods.
1. Introduction

To understand and quantify cellular processes, intensive research
is carried out using time-lapse fluorescence microscopy imaging and
image analysis. Automatic detection and tracking of viral structures
tagged with fluorescent labels is an important task to quantify virus
infection processes and kinetics (Ewers et al., 2005; Arhel et al., 2006;
Ivanchenko et al., 2009; Chang et al., 2011; Lee et al., 2019; Imle et al.,
2019). Also, to characterize nuclear organization and chromatin motil-
ity (Heun et al., 2001; Levi and Gratton, 2008; Krawczyk et al., 2012),
detection and tracking of fluorescently labeled chromatin structures is
required. Due to the limited spatial resolution of optical microscopy,
such structures have a spot-like appearance in the image data. The main
steps of particle tracking are particle detection and association. Reliable
detection and accurate localization of particles are important since
errors are propagated to the association step and generally degrade
the tracking performance. The main challenges for particle detection
and tracking are low signal-to-noise ratio (SNR), small particle size,
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heterogeneity in particle size, high object density, lack of prominent
particle shape, complex motion, and clutter.

1.1. Particle detection and tracking

Particle detection methods can be subdivided into single-scale and
multi-scale approaches. Performance evaluations of different methods
were carried out in Ruusuvuori et al. (2010), Smal et al. (2010) and
Štěpka et al. (2015). Single-scale approaches exploit information from
only one image scale (e.g., Bright and Steel, 1987; Breen et al., 1991;
Thomann et al., 2002; Sage et al., 2005; Smal et al., 2008b; Pan et al.,
2010; Rezatofighi et al., 2012). The spot-enhancing filter (SEF) (Sage
et al., 2005) enhances particles while reducing noise and applies a
Laplacian-of-Gaussian (LoG) filter. The standard deviation of the LoG
needs to be adjusted according to the size of the particles. Model fitting
approaches that fit Gaussian models to the image intensities (Thomann
et al., 2002; Godinez et al., 2009; Pan et al., 2010) and detection
vailable online 8 June 2024
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approaches based on grayscale morphology using h-dome transforma-
tion were also proposed (Vincent, 1993; Smal et al., 2008b; Rezatofighi
et al., 2012). These approaches assume a relatively simple appearance
model of particles (Gaussian functions). Top-hat filters for particle
detection (Bright and Steel, 1987; Breen et al., 1991) exploit the mean
intensities in local neighborhoods. The size of the local neighborhoods
needs to be adjusted according to the size of the particles. Multi-
cale approaches use information from multiple image scales to detect
articles with varying size (e.g., Olivo-Marin, 2002; Basset et al., 2015;
aiswal et al., 2015; Gudla et al., 2017; Newby et al., 2018; Woll-
ann et al., 2019). Olivo-Marin (2002) proposed a detection method

ased on Wavelet transformation which employs wavelet multi-scale
roducts. Jaiswal et al. (2015) proposed a multi-scale SEF approach
MSSEF) which iteratively exploits multiple scales. Basset et al. (2015)
ntroduced ATLAS which is an adaptive thresholding scheme with
utoselected scale selection. All these multi-scale detection approaches
se only a single detection method. In recent years, deep learning
pproaches have been introduced for particle detection in microscopy
mages (Gudla et al., 2017; Newby et al., 2018; Wollmann et al., 2019).
pproaches based on convolutional neural networks (CNNs) have been
roposed (Gudla et al., 2017; Newby et al., 2018). These methods re-
uire a relatively large number of parameters or are based on a sliding
indow scheme. Wollmann et al. (2019) proposed an hourglass-shaped
econvolution Network denoted as DetNet which has a significantly

educed number of parameters and does not require a sliding window
cheme.

For particle tracking, different methods have been introduced and
valuated (e.g., Chenouard et al., 2014). The methods can be subdi-
ided into deterministic, probabilistic, and deep learning approaches.
eterministic tracking approaches perform either particle detection and
orrespondence finding (e.g., Cox, 1993; Sbalzarini and Koumoutsakos,
005; Jaqaman et al., 2008; Godinez et al., 2009) or obtain trajecto-
ies by finding minimal cost paths in a spatial–temporal volume (e.g.,
onneau et al., 2005; Xue and Leake, 2009). However, these ap-
roaches do not consider uncertainties, and suffer from erroneous
etections or challenging object constellations for correspondence find-
ng (e.g., clutter, spurious objects). Probabilistic tracking approaches
ake into account uncertainties and are based on a Bayesian framework
here particle positions are determined from a posterior distribu-

ion incorporating noisy measurements (e.g., Genovesio et al., 2006;
mal et al., 2008a; Godinez and Rohr, 2015; Jaiswal et al., 2015;
oudot et al., 2017; Ritter et al., 2018; Dmitrieva et al., 2019; Ritter
t al., 2021). Most Bayesian filtering methods exploit only two frames
nd only past information for correspondence finding in contrast to
ayesian smoothing approaches (Roudot et al., 2017; Ritter et al., 2018,
021) which consider multiple frames by taking into account informa-
ion from past and future time points. Roudot et al. (2017) introduced
iecewise-stationary motion smoothing to cope with heterogeneous
ovements and use single measurements for Kalman filtering. In Ritter

t al. (2018), a two-filter smoothing approach was proposed which
xploits multiple measurements obtained from a single detector using
robabilistic data association with elliptical sampling (PDAE) (Godinez
nd Rohr, 2015). Ritter et al. (2021) introduced a PDAE-based smooth-
ng approach with multi-sensor data fusion (SMS-PDAE), which fuses
redictions from both past and future time points by covariance in-
ersection and integrates multiple measurements from a single detec-
or. Coraluppi and Carthel (2011), Chenouard et al. (2013) and Liang
t al. (2014) proposed multiple-hypothesis tracking approaches that
xplore the correspondence space over multiple time points which
equires high computational cost and seek globally optimal solutions,
ut may not yield locally best assignments. In recent work, deep learning
ethods for particle tracking were introduced (e.g., Yao et al., 2020;

pilger et al., 2020, 2021) which use recurrent neural networks to de-
ermine assignment probabilities for correspondence finding. However,
hese methods require ground truth data for training and exploit only
osition information but not image intensity information. All existing
2

article tracking approaches use a single detection method.
1.2. Contributions

In this contribution, we introduce a novel probabilistic approach
for particle tracking in fluorescence microscopy images based on multi-
detector multi-scale data fusion and Bayesian smoothing. Our approach
integrates multiple measurements (detections) from multiple detectors
using multiple image scales by a novel intensity-based covariance inter-
section method. Covariance intersection is a data fusion method for un-
known cross-covariances which ensures a consistent estimate. Existing
covariance intersection methods are position-based, and were applied
to synthetic and remote sensing images (Julier and Uhlmann, 2009;
Guo et al., 2010; Deng et al., 2012) and microscopy images (Ritter
et al., 2021). In comparison, the proposed intensity-based covariance
intersection method exploits image intensities besides positions and
uncertainties, and does not require an optimization step. In addition,
we integrate detections from different methods, both classical and deep
learning methods as well as exploit detections in multiple image scales.
Further, for each particle a time-varying estimate of the measurement
noise covariance is computed to improve update estimation. False pos-
itive detections are rejected using image likelihoods that represent the
image intensities in the local neighborhood of detections. Information
from future time points are integrated by Bayesian smoothing. We fuse
predictions as well as motion information from past and future time
points obtained by two filters running in opposite temporal directions.

The proposed approach for particle tracking is the first that in-
tegrates detections from multiple methods using multiple scales and
performs Bayesian smoothing to integrate temporal information over
time. We also introduce a novel intensity-based covariance intersection
method for multi-detector multi-scale data fusion. Our approach has
been evaluated using data from the Particle Tracking Challenge and
yielded state-of-the-art results or better results than previous methods.
Further, we performed a quantitative evaluation for challenging live
cell time-lapse microscopy image data of different subcellular struc-
tures, namely viral and cellular proteins expressed in hepatitis C virus
(HCV) infected cells and fluorescently labeled chromatin structures in
non-infected cells, acquired at different spatial–temporal resolutions.
Our approach obtained superior results compared to existing methods.

2. Methods

2.1. Overview of our approach

The proposed particle tracking approach integrates multiple mea-
surements from multiple particle detectors within a Bayesian frame-
work and combines multi-detector data fusion with Bayesian smooth-
ing. Results from multiple detectors are fused by a novel intensity-based
covariance intersection which ensures a consistent fused estimate of
particle measurements and exploits image intensities, positions, and
uncertainty information. Further, we incorporate information from past
and future time points. Multiple detection-based and prediction-based
measurements are generated by probabilistic data association with
elliptical sampling (PDAE) (Godinez and Rohr, 2015) and are integrated
in a Kalman filter-based tracking approach.

Below, we first describe particle tracking as Bayesian estimation
problem. Then, we present our multi-detector data fusion approach by
intensity-based covariance intersection. Subsequently, we describe the
Bayesian smoothing approach for tracking which incorporates informa-
tion from past and future time points.

2.2. Particle tracking by Bayesian filtering

We formulate particle tracking within a Bayesian framework where
a particle at time point 𝑡 is represented by a state vector 𝐱𝑡 = (𝑝𝑥, �̇�𝑥, 𝑝𝑦,
̇ 𝑦, 𝐼max, 𝜎𝑥𝑦)𝑇 consisting of the position 𝐩𝑡 = (𝑝𝑥, 𝑝𝑦)𝑇 , velocity 𝐯𝑡 =
(�̇�𝑥, �̇�𝑦)𝑇 , and intensity information 𝐈𝑡 = (𝐼max, 𝜎𝑥𝑦)𝑇 . 𝐼max is the

maximum intensity and 𝜎𝑥𝑦 the width of a Gaussian appearance model
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Fig. 1. Overview of our multi-detector intensity-based covariance intersection method (MD-iCI).
𝑔Gauss(𝑥, 𝑦; 𝐱𝑡) = 𝐼b + (𝐼max − 𝐼b) exp
(

− (𝑥−𝑝𝑥)2+(𝑦−𝑝𝑦)2

2𝜎2𝑥𝑦

)

with background

intensity 𝐼b. The dynamic model 𝑝
(

𝐱𝑡|𝐱𝑡−1
)

describes the temporal
evolution of the state 𝐱𝑡. To estimate 𝐱𝑡, the noisy measurement 𝐲𝑡 =
(𝑝𝑥, 𝑝𝑦, 𝐼max, 𝜎𝑥𝑦)𝑇 is exploited by the measurement model 𝑝

(

𝐲𝑡|𝐱𝑡
)

,
and a Bayesian filter (Särkkä, 2013) is used to determine the posterior
distribution 𝑝

(

𝐱𝑡|𝐲1∶𝑡
)

conditionally on all measurements 𝐲1∶𝑡 ∈ R4×𝑡 up
to time point 𝑡 using Bayes’ theorem

𝑝
(

𝐱𝑡|𝐲1∶𝑡
)

=
𝑝
(

𝐲𝑡|𝐱𝑡
)

∫ 𝑝
(

𝐱𝑡|𝐱𝑡−1
)

𝑝
(

𝐱𝑡−1|𝐲1∶𝑡−1
)

d𝐱𝑡−1
∫ 𝑝

(

𝐲𝑡|𝐱𝑡
)

𝑝
(

𝐱𝑡|𝐲1∶𝑡−1
)

d𝐱𝑡
(1)

The posterior distribution 𝑝
(

𝐱𝑡|𝐲1∶𝑡
)

∼ 
(

𝐱𝑡;𝐦𝑡,𝐏𝑡
)

with mean 𝐦𝑡 ∈
R6×1 and covariance matrix 𝐏𝑡 ∈ R6×6 can be calculated in a closed
form via the Kalman filter if linear and Gaussian models are assumed
for the dynamic model and the measurement model:

𝑝
(

𝐱𝑡|𝐱𝑡−1
)

∼ 
(

𝐱𝑡;𝐅𝐦𝑡−1,𝐐
)

(2)

𝑝
(

𝐲𝑡|𝐱𝑡
)

∼ 
(

𝐲𝑡;𝐇𝐦𝑡,𝐑
)

(3)

For 𝑝
(

𝐱𝑡|𝐱𝑡−1
)

, a random walk model with 𝐅 = diag(1, 1, 1, 1, 1, 1) is
assumed and the covariance matrix 𝐐 = diag(𝑞𝑝𝑥 , 𝑞�̇�𝑥 , 𝑞𝑝𝑦 , 𝑞�̇�𝑦 , 𝑞𝐼max , 𝑞𝜎𝑥𝑦 )
reflects the uncertainty of the dynamic model. For 𝑝

(

𝐲𝑡|𝐱𝑡
)

, a mea-
surement model 𝐲𝑡 = 𝐇𝐦𝑡 is used and the uncertainty is reflected by
the covariance matrix 𝐑 = diag(𝑟𝑝𝑥 , 𝑟𝑝𝑦 , 𝑟𝐼max , 𝑟𝜎𝑥𝑦 ). Based on the state
estimate 𝐱𝑡−1, the mean �̂�𝑡 and covariance �̂�𝑡 of the predicted state �̂�𝑡
are computed by

�̂�𝑡 = 𝐅𝐦𝑡−1 (4)
�̂�𝑡 = 𝐅𝐏𝑡−1 𝐅𝑇 +𝐐 (5)

Using the prediction, the mean 𝐦𝑡 and covariance 𝐏𝑡 of the state 𝐱𝑡 is
given by

𝐦𝑡 = �̂�𝑡 +𝐊𝑡
(

𝐲𝑡 −𝐇�̂�𝑡
)

(6)

𝐏𝑡 =
(

𝐈 −𝐊𝑡 𝐇
)

�̂�𝑡 (7)

where 𝐈 ∈ R6×6 is the identity matrix and 𝐊𝑡 ∈ R6×4 is the Kalman gain
𝐊𝑡 = �̂�𝑡 𝐇𝑇

(

𝐇 �̂�𝑡 𝐇𝑇 + 𝐑
)−1

.

2.3. Multi-detector fusion

Probabilistic particle tracking approaches based on Bayesian filter-
ing often use the Kalman filter and exploit single measurements for pre-
diction and update estimation (e.g., Genovesio et al., 2006; Chenouard
et al., 2013; Roudot et al., 2017). Multiple measurements (via ellip-
tical sampling around the detection and prediction) were used in
the probabilistic data association with elliptical sampling (PDAE) ap-
proach (Godinez and Rohr, 2015). The Smoothing Multi-Sensor PDAE
(SMS-PDAE) approach (Ritter et al., 2021) integrates multiple mea-
surements and exploits separate uncertainties to improve update es-
timation. However, PDAE and SMS-PDAE employ a single detection
3

method and use a single image scale. In contrast, the proposed tracking
approach integrates detections from multiple methods (with separate
uncertainties) and uses multiple image scales to improve measurement
and update estimation. Particles are detected by different methods
and the detections are fused to reduce the overall uncertainty and
increase the accuracy. A consistent fused estimate can be obtained by
the covariance intersection (CI) algorithm (Julier and Uhlmann, 1997),
which determines the optimal weighting coefficients of each detection
on the fused result. However, an iterative optimization scheme is
required and intensity information is not used. We suggest a different
approach, where the calculation of weighting coefficients by optimiza-
tion is replaced by computing image likelihoods directly from the image
intensities. The proposed intensity-based covariance intersection (iCI)
approach for multi-detector (MD) data fusion is denoted by MD-iCI and
takes into account image intensities, positions, and uncertainties from
multiple detectors. An overview is given in Fig. 1.

For each detector 𝑖 ∈ {1, 2,… , 𝑛} at time point 𝑡, a measurement
𝐲𝑖,𝑡 ∈ R4×1 with uncertainty 𝐑𝑖 ∈ R4×4 is obtained. The fused mea-
surement 𝐲f,𝑡 ∈ R4×1 at time point 𝑡 (corresponding to one object in an
image) can be determined by the unbiased linear combination of the
measurements 𝐲𝑖,𝑡 (Julier and Uhlmann, 1997)

𝐲𝑓,𝑡 =
𝑛
∑

𝑖=1
𝐊𝑖 𝐲𝑖,𝑡 (8)

with the gain matrices 𝐊𝑖 ∈ R4×4. The 𝐊𝑖 are determined by optimizing
a cost function 𝐽 (𝐑f) of the covariance matrix 𝐑f ∈ R4×4 of the fused
measurement

𝐑f =
[

𝐊1 ⋯ 𝐊𝑛
]

⎡

⎢

⎢

⎣

𝐑1
1 ⋯ 𝐑𝑛

1
⋮ ⋱ ⋮
𝐑1
𝑛 ⋯ 𝐑𝑛

𝑛

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐊1
⋮
𝐊𝑛

⎤

⎥

⎥

⎦

(9)

with ∑𝑛
𝑖=1 𝐊𝑖 = 𝐈, and 𝐈 is the identity matrix. 𝐽 (𝐑f) is a strictly

monotonically increasing function such as the trace or determinant
of 𝐑f (Reinhardt et al., 2015; Chen et al., 2002; Niehsen, 2002). The
matrices 𝐑𝑖

𝑖 in (9) represent the covariances of measurement 𝐲𝑖,𝑡, and
the matrices 𝐑𝑗

𝑖 represent the cross-covariances of measurement 𝐲𝑖,𝑡
from detector 𝑖 based on the measurement 𝐲𝑗,𝑡 from detector 𝑗.

2.3.1. Multi-detector fusion with intensity-based covariance intersection
(MD-iCI)

In our MD-iCI, all detectors are applied to the same image. There-
fore, the measurement errors can be assumed to be correlated due to
common image noise, and the measurement processes are not indepen-
dent, i.e. the cross-covariances in (9) are not zero (𝐑𝑗

𝑖 ≠ 𝟎 for 𝑖 ≠ 𝑗) and
unknown. Fusing multiple measurements 𝐲𝑖,𝑡, a consistent estimate of the
fused measurement 𝐲f,𝑡 is represented by the ellipsoid corresponding to
the fused covariance matrix 𝐑f which bounds the intersection of all
ellipsoids of 𝐑𝑗

𝑖 (Julier and Uhlmann, 1997; Reinhardt et al., 2015).
An estimate is consistent if it converges to the true parameter and
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the covariance of the estimation error converges to zero as the sample
number increases. Using the CI algorithm (Julier and Uhlmann, 1997;
Niehsen, 2002), the intersection for unknown cross-covariances can be
characterized by a convex combination of the covariances and allows
computing an optimal fused measurement

𝐲f,𝑡 = 𝐑f,t

𝑛
∑

𝑖=1
𝜔𝑖

(

𝐑𝑖
)−1 𝐲𝑖,𝑡 𝐑f,t =

( 𝑛
∑

𝑖=1
𝜔𝑖

(

𝐑𝑖
)−1

)−1

(10)

0 ≤ 𝜔𝑖 ≤ 1 and
𝑛
∑

𝑖=1
𝜔𝑖 = 1

xisting CI algorithms (e.g., Julier and Uhlmann, 2009; Deng et al.,
012) are position-based (i.e. they use the positions of detections)

and determine the optimal weighting coefficients 𝜔𝑖 by minimizing
he trace (or determinant) of 𝐑f with respect to 𝜔𝑖 (Reinhardt et al.,
015). However, this is a nonlinear optimization problem with con-
traints, which requires high computation costs (Deng et al., 2012).
lso, intensity information is not exploited. In contrast, we suggest
different approach to compute 𝜔𝑖 by exploiting image intensities

esides positions and uncertainties. Since the weighting coefficients
re constrained to 𝜔𝑖 ∈ [0, 1] and ∑𝑛

𝑖=1 𝜔𝑖 = 1, we interpret them as
robabilities. We propose using the probabilities of how well the image
ntensities within a region-of-interest (ROI) around each detection 𝐲𝑖,𝑡
epresent particle intensities synthesized with the used Gaussian ap-
earance model (cf. Section 2.2). The probabilities are computed based
n the image likelihood which was previously used in Godinez and
ohr (2015) for computing association weights to solve correspondence

inding. Instead, we here use the probabilities based on the image
ikelihood to incorporate information of the image intensities around
he position 𝐩𝑖,𝑡 =

(

𝑝𝑥, 𝑝𝑦
)

of 𝐲𝑖,𝑡 to determine the intensity-based
weighting coefficients for fusing detections. The image likelihood 𝛼𝑖 is
defined by

𝛼𝑖 =
𝑝𝑜

(

𝐼ROI
(

𝐩𝑖,𝑡
)

|𝐼𝑔Gauss

(

𝐩𝑖,𝑡
)

)

𝑝𝑏
(

𝐼ROI
(

𝐩𝑖,𝑡
)

|𝐼𝐼𝑏
(

𝐩𝑖,𝑡
)

) (11)

where 𝑝𝑜(⋅) is the image object likelihood defined as the Euclidean
distance between the image intensities within the ROI around 𝐩𝑖,𝑡 and
he image intensities synthesized with the Gaussian appearance model
f a particle. 𝑝𝑏(⋅) is the background image likelihood which is defined
nalogously using the ROI background value 𝐼𝑏. Since we interpret the

weighting coefficients as probabilities, we use the normalization

𝜔𝑖 =
𝛼𝑖

∑𝑛
𝑖=1 𝛼𝑖

(12)

hus, since the constraints for 𝜔𝑖 of the existing CI algorithms in (10)
re fullfilled, our MD-iCI yields a consistent estimate. This was proofed
n Julier and Uhlmann (1997) for arbitrary weighting coefficients. MD-
CI determines the fused measurement 𝐲f,𝑡 using the computed intensity-
ased 𝜔𝑖 and incorporates uncertainties by the covariance matrices 𝐑𝑖
f measurements 𝐲𝑖,𝑡 by

f,𝑡 = 𝐑f,t

𝑛
∑

𝑖=1

(

𝛼𝑖
∑𝑛

𝑖=1 𝛼𝑖

)

(

𝐑𝑖
)−1 𝐲𝑖,𝑡 (13)

he 𝜔𝑖 are computed for each time point 𝑡, thus the fused measurement
ovariance matrix

f,t =

( 𝑛
∑

𝑖=1

(

𝛼𝑖
∑𝑛

𝑖=1 𝛼𝑖

)

(

𝐑𝑖
)−1

)−1

(14)

is changing over time and is a time-varying estimate of the mea-
surement noise covariance. In contrast, previous probabilistic tracking
approaches (e.g., Genovesio et al., 2006; Godinez et al., 2009; Cora-
luppi and Carthel, 2011; Jaiswal et al., 2015; Godinez and Rohr, 2015;
Roudot et al., 2017; Ritter et al., 2021) used a fixed measurement
covariance matrix or an uncorrelated matrix (white Gaussian noise),
and did not exploit image intensity to determine the measurement
noise.
4

a

2.3.2. Measurement rejection and assignment
In our MD-iCI, we use the image likelihood 𝛼𝑖 in (11) to identify

false positive detections and reject them from fusion. The 𝛼𝑖 quan-
tify how well the intensities around measurement 𝐲𝑖,𝑡 from detector 𝑖
agree with the intensities of a particle synthesized with the Gaussian
appearance model (cf. Section 2.2). If 𝛼𝑖 is below a threshold, 𝐲𝑖,𝑡 is
lassified as false positive detection and rejected for fusion (see Fig. 2
or an example). When applying 𝑁𝑑 detectors to an image with multiple
articles, each detector yields a set of detections. For time point 𝑡,

the detector with the largest number of detections is identified and a
one-to-one correspondence with detections from the other detectors is
found by a global nearest neighbor method based on a graph-theoretical
approach for the transportation problem (Sbalzarini and Koumoutsakos,
2005). We use the detector with the largest number of detections to
obtain the maximum number of one-to-one correspondences. Next,
among the 𝑁𝑑 − 1 detectors with unassigned detections, the detector
with the largest number of detections is identified and one-to-one
correspondences between detections are determined. This sequential
procedure is completed after maximum 𝑁𝑑 − 1 iterations and the
remaining unassigned detections are used for track initialization.

2.4. Bayesian smoothing for tracking

Our MD-iCI approach uses spatial information from multiple detec-
tors. For tracking, we also exploit temporal information using Bayesian
smoothing and incorporate past and future time points. We denote
our tracking approach as multi-detector Bayesian smoothing (MD-BS).
An overview of MD-BS is shown in Fig. 3. The posterior probability
distribution 𝑝

(

𝐱𝑡|𝐲f,1∶𝑇
)

is computed conditionally on all fused mea-
urements 𝐲f,1∶𝑇 ∈ R4×𝑇 up to time point 𝑇 , where 𝑇 > 𝑡 is a future
ime point (Särkkä, 2013):

(

𝐱𝑡|𝐲f,1∶𝑇
)

= 𝑝
(

𝐱𝑡|𝐲f,1∶𝑡
)

∫
𝑝
(

𝐱𝑡+1|𝐱𝑡
)

𝑝
(

𝐱𝑡+1|𝐲f,1∶𝑇
)

𝑝
(

𝐱𝑡+1|𝐲f,1∶𝑡
) d𝐱𝑡+1 (15)

e solve (15) by using two MS-PDAE (Multi-Sensor PDAE, Ritter et al.
2021)) in conjunction with the proposed MD-iCI running forward and
ackward in time analogously to the two-filter smoothing approach
y Fraser and Potter (1969). At time point 𝑡, forward tracking provides
predicted state �̂�𝑡|𝑡−1 ∈ R6×1 based on the state at time point 𝑡 − 1

ue to the Markovian property (Särkkä, 2013). Analogously, backward
racking provides a predicted state �̂�𝑡|𝑡+1 ∈ R6×1 based on the state at
ime point 𝑡+1. The two predicted states are fused as described below.

.4.1. Prediction fusion with covariance intersection algorithm
Our MD-BS computes the state 𝐱𝑡 based on the fused predicted state

̂ f,𝑡 determined from the forward predicted state �̂�𝑡|𝑡−1 and the backward
redicted state �̂�𝑡|𝑡+1. Two filters are running forward and backward
n time and both use the same motion and noise model. Thus, the
stimation errors of �̂�𝑡|𝑡−1 and �̂�𝑡|𝑡+1 are correlated due to common noise
odels (Bar-Shalom and Campo, 1986; Bar-Shalom, 1981). Further, the

ross-covariances �̂�𝑡|𝑡−1 ; 𝑡|𝑡+1 and �̂�𝑡|𝑡+1 ; 𝑡|𝑡−1 are not zero and unknown.
n this case, a consistent estimate of �̂�f,𝑡 with mean �̂�f,𝑡 and covariance
̂ f,𝑡 can be obtained by the CI algorithm (Julier and Uhlmann, 1997):

̂ f,𝑡 = �̂�f,𝑡

[

𝜔
(

�̂�𝑡|𝑡−1

)−1
�̂�𝑡|𝑡−1 + (1 − 𝜔)

(

�̂�𝑡|𝑡+1

)−1
�̂�𝑡|𝑡+1

]

(16)

�̂�f,𝑡 =
[

𝜔
(

�̂�𝑡|𝑡−1

)−1
+ (1 − 𝜔)

(

�̂�𝑡|𝑡+1

)−1
]−1

(17)

here �̂�𝑡|𝑡−1 and �̂�𝑡|𝑡+1 are the mean of the predicted states �̂�𝑡|𝑡−1 and
̂ 𝑡|𝑡+1, respectively. In the MD-BS, we equally weight the information
rom the forward and backward filters using 𝜔 = 0.5. Note that the
rediction is a coarse estimate of the position of a particle and generally
ot exactly located at a particle. Thus, exploiting intensity information
t the predicted position generally does not improve the result. �̂�𝑡|𝑡−1
nd �̂�𝑡|𝑡+1 are assigned by a global nearest neighbor method (Sbalzarini

nd Koumoutsakos, 2005).
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Fig. 2. MD-iCI and measurement rejection for synthetic data. Ground truth and MD-iCI detections are shown by green circles. For detector 1 and 2, orange circles represent false
positive and rejected detections, green circles represent detections used by MD-iCI, and the corresponding table shows the image likelihood and weighting coefficients. The white
dotted ellipses depict assigned and fused detections by MD-iCI. Detector 1 is sensitive for large particles leading to a false positive detection for two small particles located close
together. Detector 2 is sensitive to small particles and yields a false positive detection for the large particle. MD-iCI fuses the detections of detector 1 and 2 and obtains the best
F1 score and 𝑅𝑀𝑆𝐸 compared to the single detectors.
Fig. 3. Overview of our MD-BS tracking approach. The approach combines our MD-iCI for multi-detector fusion (spatial information) and Bayesian smoothing with covariance
intersection for prediction fusion (temporal information).
2.4.2. Multi-sensor PDAE with multi-detector fusion
MD-BS uses forward and backward MS-PDAE filters in conjunction

with MD-iCI. Both MS-PDAE filters exploit multiple measurements by
generating detection-based and prediction-based measurements within
local elliptical regions around the detections and predictions. The two
different measurement processes have separate uncertainties and the
multiple measurements are integrated by a sequential multi-sensor data
fusion approach consisting of two steps to determine the state 𝐱𝑡.

First, the state 𝐱Det,𝑡 ∈ R6×1 (with mean 𝐦Det,𝑡 ∈ R6×1 and covariance
matrix 𝐏Det,t ∈ R6×6) is determined using the fused predicted state
�̂�f,𝑡 (with mean �̂�f,𝑡 and covariance matrix �̂�f,𝑡) and the detection-based
measurements 𝐲f,𝑖,Det,𝑡 by computing

𝐦Det,𝑡 = �̂�f,t +𝐊Det,𝑡 𝐯Det,𝑡 (18)

𝐏 =
(

𝐈 −𝐊 𝐇
)

�̂� (19)
5

Det,t Det,𝑡 f,𝑡
where 𝐯Det,𝑡 =
∑𝑁Det

𝑖=1 𝛽𝑖,Det,𝑡 𝐯𝑖,Det,𝑡 is the combined innovation consisting
of the association probabilities 𝛽𝑖,Det,𝑡 ∈ [0, 1] (based on a Gaussian
appearance model for spot-like particles, see Section 2.2) and the inno-
vations 𝐯𝑖,Det,𝑡 = 𝐲f,𝑖,Det,𝑡 −𝐇�̂�𝑡. 𝐲f,𝑖,Det,𝑡 are determined within elliptical
regions around the fused detection 𝐲f,𝑡 obtained by our MD-iCI. The
Kalman gain matrix for 𝐲f,𝑖,Det,𝑡 is given by:

𝐊Det,𝑡 = �̂�f,𝑡 𝐇𝑇 (

𝐒Det,𝑡
)−1 (20)

𝐒Det,𝑡 = 𝐇 �̂�f,𝑡 𝐇𝑇 + 𝐑f,Det,𝑡 (21)

The innovation covariance matrix 𝐒Det,𝑡 ∈ R4×4 reflects the uncertainty
of the innovation 𝐯Det,𝑡 and the uncertainty of 𝐲f,𝑖,Det,𝑡 is represented
by the covariance matrix 𝐑f,Det,𝑡 ∈ R4×4 obtained by MD-iCI. Note that
the covariance matrix 𝐑f,Det,𝑡 is changing over time in contrast to Ritter
et al. (2021) where a fixed covariance matrix was used.

Second, the state 𝐱𝑡 (with mean 𝐦𝑡 and covariance matrix 𝐏𝑡) is
determined by the estimate 𝐱 (with mean 𝐦 and covariance
Det,𝑡 Det,𝑡
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Fig. 4. Performance of MD-iCI (red curve) compared to two SEFs with 𝜎LoG = 3.0 (blue) and 𝜎LoG = 8.0 (green) for images with increasing 𝑟offset, max (maximum particle radii offsets)
corresponding to increasing particle size heterogeneity. MD-iCI fuses the detections of the two SEFs. (a) Detection performance by the F1 score. (b) Localization performance by
𝑅𝑀𝑆𝐸.
matrix 𝐏Det,t) and the prediction-based measurements 𝐲𝑗,Pred,𝑡 with

𝐦𝑡 = 𝐦Det,𝑡 +𝐊Pred,𝑡 𝐯Pred,𝑡 (22)

𝐏𝑡 =
(

𝐈 −𝐊Pred,𝑡 𝐇
)

𝐏Det,𝑡 (23)

where 𝐯Pred,𝑡 =
∑𝑁Pred

𝑗=1 𝛽𝑗,Pred,𝑡 𝐯𝑗,Pred,𝑡 is the combined innovation with
the association probabilities 𝛽𝑗,Pred,𝑡 ∈ [0, 1] (based on a Gaussian
appearance model) and the innovations 𝐯𝑗,Pred,𝑡 = 𝐲𝑗,Pred,𝑡 − 𝐇𝐦Det,𝑡.
The Kalman gain matrix for 𝐲𝑗,Pred,𝑡 is given by:

𝐊Pred,𝑡 = 𝐏Det,𝑡 𝐇𝑇
(

𝐇𝐏Det,𝑡 𝐇𝑇 +𝐇 �̂�f,𝑡 𝐇𝑇
)−1

(24)

The detection-based measurements 𝐲f,𝑖,Det,𝑡 are determined within an
elliptical sampling region centered at the position of the fused detection
obtained by MD-iCI. The prediction-based measurements 𝐲𝑗,Pred,𝑡 are
obtained analogously using the position of the predicted state.

For the assignment between predictions and measurements, we use
a displacement-based correspondence finding approach (Ritter et al.,
2021), which exploits motion information from past and future time
points. We employ displacements obtained by the two MS-PDAE with
MD-iCI running in opposite temporal directions and use a graph-
theoretical approach (Sbalzarini and Koumoutsakos, 2005) to solve the
correspondence problem.

3. Experimental results

We evaluated the detection and localization performance of the
proposed multi-detector fusion approach with intensity-based covari-
ance intersection (MD-iCI) and studied the tracking performance of the
proposed probabilistic approach based on multi-detector data fusion
and Bayesian smoothing (MD-BS). We used data of the Particle Track-
ing Challenge (Chenouard et al., 2014) as well as different time-lapse
fluorescence microscopy images of hepatitis C virus associated proteins
and chromatin structures.

3.1. Synthetic data

We assessed the detection and localization performance of MD-iCI
on synthetic image data showing particles with heterogeneous size. We
generated synthetic images with 512 × 512 pixels that display 100
particles represented by a 2D Gaussian function. For each image, a
particle has a radius (standard deviation of the 2D Gaussian function)
between 𝑟min and 𝑟max, sampled from a uniform distribution. For 𝑟min
we used 4 pixels, while 𝑟max = 𝑟min + 𝑟offset, max and 𝑟offset, max varies
for the different images (from 0 to 24 pixels) and defines the variation
of particle sizes (heterogeneity) in an image. To simulate camera noise
(e.g., CCD) the images are corrupted by Poisson noise (Sbalzarini and
Koumoutsakos, 2005).
6

We compared MD-iCI with two different single-scale spot-enhancing
filters (SEF) (Sage et al., 2005). SEF uses a Laplacian-of-Gaussian (LoG)
filter with standard deviation 𝜎LoG followed by thresholding. The
threshold is determined by the mean of the absolute values of the filter
responses plus a factor 𝑐 times the standard deviation. This method is
often used for particle detection.

The detection performance is quantified by the F1 score∈ [0, 1],
where a value of 1 represents a perfect result. The localization per-
formance is quantified by the mean 𝑅𝑀𝑆𝐸 ∈ [0, 5] between detected
particles and ground truth. The assignment between detected particles
and ground truth was determined by the Munkres algorithm (Kuhn,
1955) with a maximal gating distance of 5 pixels. To compare the
detection approaches, we considered the 𝑅𝑀𝑆𝐸 of true positive as well
as false negative detections. This has the advantage that the number of
considered detections is the same for all methods. If a ground truth
particle is not matched with a computed detection, a localization error
of 5 pixels (maximal gating distance) is used.

First, we studied images with an increasing 𝑟offset, max (maximum
particle radii offset) from 0 to 24 pixels. We used SNR=1.89. The detec-
tion performance is shown in Fig. 4a and the localization performance
is displayed in Fig. 4b. It turns out, that MD-iCI performs best. MD-iCI
yields for all images an F1 score above 98% compared to two single-
scale SEFs (𝜎LoG = 3.0 and 8.0) which obtain F1 scores above 78%.
MD-iCI yields for all images an 𝑅𝑀𝑆𝐸 below 1.1 pixels, whereas both
SEFs obtain 𝑅𝑀𝑆𝐸s up to 3.08 and 3.17 pixels. An example detection
result is shown in Fig. 5 for 𝑟offset, max = 16 pixels (yielding particle
radii between 4 and 20 pixels). It can be seen, that MD-iCI detects all
particles with various sizes compared to both SEFs.

Second, we considered different SNR levels (SNR=1 to 7) and used
𝑟offset, max = 12 pixels as well as 𝑟offset, max = 16 pixels. The result is
shown in Fig. 6. For both 𝑟offset, max, MD-iCI yields for all SNR levels
an F1 score above 97% and an 𝑅𝑀𝑆𝐸 below 1.4 pixels. In contrast,
the first SEF (with 𝜎LoG = 3.0) obtains an F1 score above 90% for
𝑟offset, max = 12 pixels, and above 78% for 𝑟offset, max = 16 pixels.
The second SEF (𝜎LoG = 8.0) yields an F1 score above 78% both
𝑟offset, max. Further, the first SEF yields an 𝑅𝑀𝑆𝐸 below 2.5 pixels for
𝑟offset, max = 12 pixels and below 3.4 pixels for 𝑟offset, max = 16, whereas
the second SEF yields an 𝑅𝑀𝑆𝐸 below 3.1 pixels for both 𝑟offset, max. It
also turns out that for a larger 𝑟offset, max (larger size heterogeneity) the
performance of the SEFs is reduced while the performance of MD-iCI is
not affected.

3.2. Particle Tracking Challenge data

We assessed our multi-detector fusion approach MD-iCI and our
tracking approach MD-BS on image data from the Particle Tracking
Challenge (Chenouard et al., 2014). We used time-lapse image se-

quences of the vesicle scenario with all object densities and all low
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Fig. 5. Ground truth and detection results for two SEFs (𝜎LoG = 3.0 and 𝜎LoG = 8.0) and MD-iCI for a synthetic image with 𝑟offset, max = 16 pixels. Only MD-iCI correctly detects all
particles.
Fig. 6. Performance of MD-iCI (red curve) compared to two SEFs with 𝜎LoG = 3.0 (blue) and 𝜎LoG = 8.0 (green) for images with different SNR levels for (a) 𝑟offset, max = 12 and (b)
𝑟offset, max = 16 pixels.
SNR levels. We selected the vesicle scenario since this dataset shows
particles with random motion which is the dominant motion type
of viral and chromatin structures as considered in our applications
using fluorescence live cell microscopy image sequences (Section 3.3).
Also, the structures have a more or less round shape compared to
elongated shapes in the microtubule scenario of the Particle Tracking
Challenge. We focus on low SNR levels, since it is known from previous
studies that these SNR levels are challenging for particle detection and
tracking (Chenouard et al., 2014). The number of particles ranges from
around 100 for low object density to around 1000 for high object
density. Each of the six image sequences consists of 100 images with
512 × 512 pixels.

For particle detection and localization, we compared MD-iCI with
two single-scale SEFs (Sage et al., 2005). For SEF 1 we used a standard
deviation 𝜎LoG = 3 pixels for low and medium object density as well as
for high object density and SNR=1, and we employed 𝜎LoG = 2 pixels
for high object density and SNR=2. For SEF 2 we used 𝜎LoG = 4 pixels
for low object density, 𝜎LoG = 2 pixels for medium object density, and
𝜎LoG = 4 pixels for high object density and SNR=1 and 𝜎LoG = 2 pixels
for SNR=2. These parameter choices yielded the best result. Besides
the classical method SEF, we also compared MD-iCI with the multi-
scale deep learning method DetNet (Wollmann et al., 2019). DetNet
7

is an adapted Deconvolution Network which naturally handles objects
at multiple scales by the hourglass-shape of the network. For each
image sequence, we used the last image for training DetNet and the
first image for validation. We investigated two variants of MD-iCI, one
which fuses the detections of two SEFs (MD-iCI 1) and one which fuses
the detections of DetNet and two SEFs (MD-iCI 2).

The detection performance is quantified by the F1 score∈ [0, 1]
computed as the mean F1 score over all images of a sequence. The
localization performance is quantified by the mean 𝑅𝑀𝑆𝐸 ∈ [0, 5] (cf.
Section 3.1). The assignment between detected particles and ground
truth was determined by the Munkres algorithm (Kuhn, 1955) with a
maximal gating distance of 5 pixels. The detection performance for all
object densities and all SNR levels is shown in Table 1, and the best
performing method is marked in bold. MD-iCI 2 outperforms the other
methods for SNR=1 for all object densities, and for SNR=2 for the
challenging high and medium density. For SNR=2 and low density,
DetNet yields the best result. Further, MD-iCI 1 performs better for
all SNR levels and all object densities than the single-scale SEFs. The
localization performance is given in Table 2. MD-iCI 2 obtains the best
localization results for all SNR levels and all object densities. Further,
MD-iCI 1 yields better localization results compared to both single-scale
SEFs for all SNR levels and all object densities, and performs better than
DetNet for all SNR levels and low object density.
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Table 1
Detection performance for all object densities for low SNR levels for the Particle
Tracking Challenge data in terms of the F1 score [%].

Seq. SEF 1 SEF 2 DetNet MD-iCI 1 MD-iCI 2

SNR=1

Low 26.06 18.53 25.90 26.19 26.82
Medium 36.55 21.18 49.75 38.68 50.42
High 38.40 34.82 48.56 44.61 55.79

SNR=2

Low 79.96 72.50 90.18 80.08 82.49
Medium 80.82 78.33 90.61 85.74 90.94
High 79.27 81.69 84.76 86.40 87.39

Mean 56.84 51.18 64.96 60.28 65.64
Std. dev. 11.51 13.20 12.19 11.99 11.37

Table 2
Localization performance for all object densities for low SNR levels for the Particle
Tracking Challenge data in terms of the 𝑅𝑀𝑆𝐸.

Seq. SEF 1 SEF 2 DetNet MD-iCI 1 MD-iCI 2

SNR=1

Low 4.38 4.76 4.67 4.37 4.36
Medium 4.43 4.70 4.24 4.36 4.15
High 4.42 4.52 4.24 4.30 4.00

SNR=2

Low 2.29 3.37 2.40 2.28 2.16
Medium 2.93 3.03 2.45 2.55 2.23
High 2.99 2.92 2.84 2.54 2.47

Mean 3.57 3.88 3.47 3.40 3.23
Std. dev. 0.42 0.39 0.46 0.46 0.47

Table 3
Mean performance metrics over all object densities for low SNR levels for the Particle
Tracking Challenge data.

Metric 𝛼 𝛽 𝐽𝑆𝐶𝜃 𝐽𝑆𝐶 𝑅𝑀𝑆𝐸

Method 5 0.327 0.275 0.523 0.365 1.752
Method 1 0.176 0.130 0.278 0.154 1.281
Method 2 0.345 0.261 0.479 0.350 1.899
SMS-PDAE 0.338 0.288 0.527 0.376 1.674
MD-BS 1 0.351 0.293 0.526 0.391 1.695
MD-BS 2 0.360 0.296 0.523 0.404 1.833

For particle tracking, we performed a comparison of MD-BS with the
verall top-three performing methods (Method 5, 1, 2) of the Particle
racking Challenge. Method 5 uses SEF for particle detection and PDAE
or particle linking (Godinez and Rohr, 2015). Method 1 employs iter-
tive centroid calculation for particle localization and assigns particles
y combinatorial optimization (Sbalzarini and Koumoutsakos, 2005).
ethod 2 detects particles by convolution with a disk shaped object and

inds correspondences by multiple-hypothesis tracking (Coraluppi and
arthel, 2011). We also compared MD-BS with the recent SMS-PDAE
ethod (Ritter et al., 2021). SMS-PDAE uses SEF for particle detection

nd temporal multi-sensor data fusion with covariance intersection for
racking. For SMS-PDAE and Method 5 we used SEF 1, since it yielded a
etter detection and localization performance than SEF 2 (cf. Tables 1
nd 2). We investigated two variants of MD-BS, one which fuses the
etections of two SEFs (SEF 1 and SEF 2) denoted as MD-BS 1 and one
hich fuses the detections of DetNet and two SEFs (SEF 1 and SEF 2)
enoted as MD-BS 2.

The tracking performance is evaluated by the metrics 𝛼, 𝛽, 𝐽𝑆𝐶𝜃 ,
𝑆𝐶, and 𝑅𝑀𝑆𝐸 from the Particle Tracking Challenge (Chenouard
t al., 2014). 𝛼 and 𝛽 quantify association and localization errors.
∈ [0, 1] provides the overall matching quality between ground truth

nd computed trajectories where a perfect matching is given by 𝛼 = 1
nd no matching is reflected by 𝛼 = 0. 𝛽 ∈ [0, 𝛼] considers additionally
purious trajectories compared to 𝛼. The similarity at the track level
8

s evaluated by the Jaccard similarity coefficient 𝐽𝑆𝐶𝜃 ∈ [0, 1]. The
accard similarity coefficient 𝐽𝑆𝐶 ∈ [0, 1] quantifies the detection
erformance, and the root mean-square error 𝑅𝑀𝑆𝐸 evaluates the
ocalization performance. Table 3 shows the mean values of all tracking
erformance metrics over all object densities and all low SNR levels.
D-BS 2 outperforms all methods for three out of five metrics, namely

, 𝛽, and 𝐽𝑆𝐶. Further, MD-BS 1 shows improved results for 𝛼, 𝛽, and
𝑆𝐶 compared to SMS-PDAE and Method 5. The results for individual
NR levels and individual object densities are provided in Appendix.
n Fig. 7, three example trajectories for SNR=2 and medium object
ensity for different tracking approaches are shown. Only MD-BS (we
sed MD-BS 2) yields three complete trajectories. By fusing multiple
etection results and exploiting information from both past and fu-
ure time points, MD-BS is able to obtain three complete trajectories
orange, blue, and purple). The other approaches yield one complete
rajectory (orange), but other trajectories are not complete (blue) or
re missing (purple).

.3. Evaluation on time-lapse fluorescence microscopy images

We also evaluated our detection approach MD-iCI and our tracking
pproach MD-BS on challenging time-lapse microscopy data sets of
iral and cellular proteins expressed in hepatitis C virus (HCV) in-
ected cells and chromatin structures in non-infected cells. The images
ere acquired with confocal fluorescence microscopes using different

patial–temporal resolutions. In total, we used nine live cell microscopy
mage sequences and compared the results for object detection and
ocalization as well as for tracking with those of previous methods.

.3.1. HCV live cell confocal microscopy images
We applied our MD-iCI to three live cell microscopy image se-

uences displaying HCV-infected cells with mCherry-labeled host cell
rotein ApoE, mCherry-labeled viral protein NS5A, or mTurquoise2-
abeled ApoE, respectively (Lee et al., 2019). The first two image se-
uences consist of 34 images with 225 × 194 and 177 × 249 pixels.
he spatial resolution is 220 nm/pixel and the temporal resolution is
7 s/frame and 1.5 s/frame, respectively. The third image sequence
onsists of 91 images with 726 × 396 pixels. The spatial resolution is
0 nm/pixel and the temporal resolution is 2 s/frame. The image data
as acquired with a PerkinElmer UltraVIEW ERS or VoX spinning disk

onfocal microscope mounted on a Nikon TE2000-E or TiE. The data
s challenging due to heterogeneous object size, clutter, high object
ensity, and complex motion.

For particle detection and localization, we performed a comparison
f MD-iCI with SEF (Sage et al., 2005) and DetNet (Wollmann et al.,
019). For SEF we used two variants with different values for 𝜎LoG.
or SEF 1 we used 𝜎LoG = 2 pixels for all videos, and for SEF 2 we
sed 𝜎LoG = 2.6 pixels for the first two videos and 𝜎LoG = 3 pixels for
he third video. These parameter choices yielded the best result. We
rained DetNet on the last image of a video and used the first image
or validation. Testing was done on the fifth image of a video. Further,
e investigated two variants of MD-iCI, one which fuses detections of

wo SEFs (MD-iCI 1) and one which fuses the detections of DetNet and
wo SEFs (MD-iCI 2).

For the detection performance, we computed the F1 score∈ [0, 1]
or time point five for each image sequence. The localization perfor-
ance is evaluated by the mean 𝑅𝑀𝑆𝐸 ∈ [0, 5] between detected
articles and ground truth (cf. Section 3.1). The assignment between
etected particles and ground truth was determined by the Munkres
lgorithm (Kuhn, 1955) with a maximal gating distance of 5 pixels.
ach image sequence contains between 157 and 194 ground truth
etections manually annotated using the Manual Tracking plug-in in
mageJ (Schneider et al., 2012). The detection performance is shown
n Table 4 and the localization results are given in Table 5. For both
etection and localization, MD-iCI 2 yields the best results for all three
mage sequences. Further, MD-iCI 1 outperforms both single-scale SEFs.
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Fig. 7. Ground truth and tracking results for different methods for the vesicle scenario from the Particle Tracking Challenge data with SNR=2 and medium density (time point
𝑡 = 70). Only MD-BS yields three complete trajectories.
Fig. 8. Original image and detection results for HCV live cell microscopy data of fluorescently labeled ApoE proteins (time point 𝑡 = 5).
Table 4
Detection results for HCV live cell image sequences, F1 score [%].

Seq. SEF 1 SEF 2 DetNet MD-iCI 1 MD-iCI 2

1 75.40 39.00 82.35 77.50 83.38
2 56.63 3.75 66.67 57.14 69.83
3 69.84 78.62 81.48 75.24 84.08

Mean 67.29 40.46 76.83 69.96 79.10
Std. dev. 6.82 26.49 6.23 7.89 5.68

Table 5
Localization results for HCV live cell image sequences, 𝑅𝑀𝑆𝐸.

Seq. SEF 1 SEF 2 DetNet MD-iCI 1 MD-iCI 2

1 3.21 4.37 2.93 3.10 2.71
2 3.63 4.95 3.55 3.62 2.64
3 3.23 3.25 3.36 3.08 2.90

Mean 3.36 4.19 3.28 3.27 2.75
Std. dev. 0.17 0.61 0.22 0.22 0.10

Example detection results for MD-iCI 2 are displayed in Fig. 8 which
show that our approach yields better results than SEF and DetNet.

For tracking of particles, we performed a comparison of MD-BS
with a Kalman filter tracking approach (KF) (Tinevez et al., 2017),
the ParticleTracker (PT) (Sbalzarini and Koumoutsakos, 2005), a
multiple-hypothesis tracking approach (MHT) (de Chaumont et al.,
2012; Chenouard et al., 2014), and the Smoothing Multi-Sensor
PDAE (SMS-PDAE) (Ritter et al., 2021). KF uses an LoG filter
for particle detection and linear assignment for correspondence
finding. PT employs intensity-weighted centroid calculation for particle
localization and assigns particles by combinatorial optimization. MHT
localizes particles by a wavelet-based detection scheme and uses a
Kalman filter with multiple motion models. SMS-PDAE employs a
single-scale SEF, and we used SEF 1 since it yielded better results than
SEF 2 (cf. Tables 4 and 5). We also investigated two variants of MD-BS,
one which fuses the detections of two SEFs (SEF 1 and SEF 2) denoted
as MD-BS 1 and one which fuses the detections of DetNet and two SEFs
(SEF 1 and SEF 2) denoted as MD-BS 2.
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Table 6
Tracking accuracy for HCV live cell image sequences, 𝑃𝑡𝑟𝑎𝑐𝑘 [%].

Seq. 1 2 3 Mean Std. dev.

KF 41.14 40.03 48.93 43.57 3.43
PT 30.88 33.35 29.22 31.15 1.47
MHT 61.46 72.32 41.51 58.43 11.05
SMS-PDAE 69.35 74.67 51.68 65.23 8.51
MD-BS 1 70.00 75.10 52.74 65.95 8.29
MD-BS 2 70.25 77.34 54.42 67.34 8.30

The tracking accuracy is evaluated by the measure 𝑃track ∈ [0, 1]:

𝑃track =
𝑛track,correct
𝑛track,total

(25)

𝑛track,total is the number of ground truth trajectories and 𝑛track,correct the
number of correctly computed trajectories. 𝑛track,correct is determined
as Gaussian weighted sum of the percentage of correctly tracked time
steps of a ground truth trajectory. The argument of the Gaussian
weighting function (mean value 1, standard deviation 1) is the number
of computed trajectories corresponding to a ground truth trajectory
(ideally the number is one). The weighting penalizes broken computed
trajectories (the larger the number of broken trajectories, the lower the
weight). Correspondences between computed and ground truth trajec-
tories are determined by a nearest neighbor approach with a maximal
gating distance of 5 pixels (Godinez and Rohr, 2015). Ground truth
was obtained by manual annotation using the Manual Tracking plug-in
in ImageJ (29, 32, and 108 trajectories for the different videos). The
number of objects in the images is about 100. Since manual annotation
is not feasible for a large number of objects in a large number of image
frames, only a certain number of objects were annotated for each image
sequence. Since for the metrics of the Particle Tracking Challenge,
ground truth for all objects in all frames of an image sequence is
required, we used the performance metric 𝑃track. The results are shown
in Table 6. We also determined the mean 𝑃track value as a measure
of the overall performance. It turned out, that MD-BS 2 yields the best
result for all image sequences and achieves a mean 𝑃𝑡𝑟𝑎𝑐𝑘 of 67.34%.
MD-BS 1 is somewhat worse and obtains better results than SMS-PDAE
for all image sequences. In Fig. 9, example results are shown. MD-BS 2
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Fig. 9. Ground truth and tracking results for different methods for HCV live cell confocal microscopy images of fluorescently labeled ApoE proteins (time point 𝑡 = 34).
yields more complete and correct trajectories than SMS-PDAE and
MD-BS 1. MHT obtains a broken trajectory.

3.3.2. Chromatin live cell confocal microscopy images
We also evaluated MD-iCI and MD-BS using six challenging live

cell microscopy image sequences with fluorescently labeled chromatin
structures of HeLa Kyoto cells (Pabba et al., 2023). The image sequences
consist of 63 images with 512 × 512 pixels. The spatial resolution
is 48 nm/pixel for four videos, and 31 nm/pixel and 49 nm/pixel for
the remaining videos. The temporal resolution is 0.985 s/frame for all
videos. The images were acquired with a PerkinElmer UltraVIEW VoX
confocal microscope. The data is challenging due to high heterogeneity
in object size, high object density, and low SNR.

For chromatin detection and localization, we performed a compar-
ison of MD-iCI with SEF and DetNet. For SEF we used two different
variants, SEF 1 with 𝜎LoG = 2.7 pixels for all videos, and SEF 2 with
𝜎LoG = 3.5 pixels for two videos (videos 3 and 6) and 𝜎LoG = 3 pixels
for the remaining videos. For DetNet, we randomly split the data into
three videos for training, two for validation, and one for testing. For
training we used the last image of a video, and for validation the first
image. Testing was done on the first image of a video. We assessed two
variants of MD-iCI as for the HCV data above. The results are given in
Table 7. It turned out that MD-iCI 2 outperforms the other methods for
all image sequences and obtains a mean F1 score of 83.67%. MD-iCI 1
performs better than both single-scale SEFs and obtains a mean F1 score
of 78.92% compared to SEF 1 with 75.77% and SEF 2 with 61.50%.
DetNet and MD-iCI 2 yield the lowest standard deviation for the F1
score (highest robustness). The localization performance is given in
Table 8. MD-iCI 2 outperforms all methods for five out of six videos.
MD-iCI 1 obtains the best result for one video and better results than
both single-scale SEFs for all videos.

For chromatin tracking, we compared MD-BS with the same meth-
ods as for the HCV data above (Section 3.3.1). We manually annotated
for each image sequence between 20 and 22 ground truth trajectories.
The tracking results for all approaches are shown in Table 9. MD-BS 2
outperforms all other methods for all image sequences and achieves
a mean 𝑃track of 45.63%. MD-BS 1 obtains for all image sequences a
better result than SMS-PDAE. Example detection results of MD-iCI 2 and
tracking results of MD-BS 2 are shown in Fig. 10. It can be seen, that the
detections are close to the ground truth for the challenging data with
heterogeneous object size and that complete trajectories are obtained.
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Table 7
Detection results for chromatin live cell image sequences, F1 score [%].

Seq. SEF 1 SEF 2 DetNet MD-iCI 1 MD-iCI 2

1 82.18 83.08 85.71 82.35 86.49
2 82.19 75.76 88.31 86.84 89.74
3 87.80 64.00 89.60 89.60 91.34
4 72.09 70.11 76.36 78.35 79.30
5 63.67 31.63 79.60 64.78 80.67
6 66.67 44.44 74.07 71.58 74.47

Mean 75.77 61.50 82.28 78.92 83.67
Std. dev. 9.69 8.79 6.50 9.41 6.58

Table 8
Localization results for chromatin live cell image sequences, 𝑅𝑀𝑆𝐸.

Seq. SEF 1 SEF 2 DetNet MD-iCI 1 MD-iCI 2

1 2.58 2.70 2.29 2.55 1.89
2 2.94 3.31 2.36 2.60 2.19
3 2.67 3.71 2.39 2.46 2.22
4 3.40 3.47 2.95 2.96 2.69
5 3.77 4.55 3.09 3.73 3.01
6 3.33 4.04 3.26 2.64 2.72

Mean 3.12 3.63 2.72 2.82 2.45
Std. dev. 1.04 0.28 0.95 1.06 0.94

Table 9
Tracking accuracy for chromatin live cell image sequences, 𝑃𝑡𝑟𝑎𝑐𝑘 [%].

Seq. 1 2 3 4 5 6 Mean Std. dev.

KF 22.01 23.47 35.39 11.23 23.74 24.50 23.39 7.68
PT 39.68 24.76 31.09 6.37 36.99 20.00 26.48 12.29
MHT 38.06 26.87 48.87 24.30 40.99 42.64 36.96 9.53
SMS-PDAE 47.85 30.16 49.60 13.29 44.67 30.31 35.98 14.02
MD-BS 1 48.71 36.98 49.85 22.37 46.85 38.12 40.48 10.41
MD-BS 2 53.94 47.21 55.64 24.44 49.72 42.80 45.63 11.36

4. Conclusion

We introduced a novel probabilistic particle tracking approach
based on multi-detector data fusion and Bayesian smoothing (MD-BS).
We also proposed a novel intensity-based covariance intersection
method (MD-iCI) which integrates multiple measurements by fusing
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Fig. 10. Results for chromatin live cell microscopy data. (Left) Detection results of MD-iCI 2 (time point 𝑡 = 5). (Right) Tracking results of MD-BS 2 for a region-of-interest (time
point 𝑡 = 25).
detections from multiple detectors in multiple image scales. MD-iCI
exploits image intensities, positions, and uncertainties, and provides
consistent estimates. Compared to existing covariance intersection algo-
rithms, image intensities are exploited based on image likelihoods and
an optimization step is not required. Further, a time-varying measure-
ment noise covariance matrix is estimated for each particle to improve
update estimation for particle tracking. False positive detections are
rejected using image likelihoods in the local neighborhood of detec-
tions. Our MD-BS tracking method combines Bayesian smoothing with
covariance intersection to fuse predictions from past and future time
points obtained by two filters running in opposite temporal directions.
In addition, motion information based on fused displacements from past
and future time points is used to improve correspondence finding.

We quantitatively evaluated MD-BS using data from the Particle
Tracking Challenge and obtained state-of-the-art results or outper-
formed previous methods. We also demonstrated that MD-iCI improves
particle detection and localization compared to existing detection meth-
ods. In addition, we benchmarked MD-BS and MD-iCI on nine chal-
lenging live cell fluorescence microscopy image sequences acquired
with microscopes using different spatial–temporal resolutions, and dif-
ferent types of subcellular structures. We found, that our approach
outperforms previous methods for microscopy data of HCV associated
proteins and chromatin structures including high object density, low
SNR, heterogeneous object size, and complex motion.

In future work, our approach will be applied to other live cell
fluorescence microscopy images of viral and chromatin structures to
quantify viral kinetics and motility of intracellular structures to reveal
new insights on viral and cellular processes.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work has been funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) - Project-ID 240245660 -
SFB 1129 (projects Z4, P11), the SPP 2202 (RO 2471/10-1, CA 198/15-
1, Project-ID 422831194) and (RO 2471/13-1, CA 198/20-1, Project-ID
529989072), and the SPP 2389. J.-Y. Lee and R. Bartenschlager ac-
knowledge support by DZIF (TTU 05.712, project number 8029705712)
and the Infectious Diseases Imaging Platform, headed by Vibor Laketa,
at the CIID, Heidelberg, Germany.
11
Appendix. Performance values for low SNR levels and all object
densities for the Particle Tracking Challenge data

The individual performance values for the low SNR levels SNR
= 1 and 2 for all object densities (low, medium, high) are given in
Tables A.1 and A.2 for all investigated methods for the vesicle scenario
from the Particle Tracking Challenge data (Chenouard et al., 2014).

For SNR=1, MD-BS 2 (two SEFs and DetNet) performs best for 𝛼, 𝛽,
and 𝐽𝑆𝐶 for medium object density, and outperforms all methods for 𝛼
for the challenging high object density. Further, MD-BS 2 obtains better
results for 𝛽 and 𝐽𝑆𝐶 than Methods 5, 1, and 2 for all object densities.
MD-BS 1 (two SEFs) yields better results for 𝛼 than SMS-PDAE for all
object densities.

For SNR=2, MD-BS 2 outperforms all methods for 𝛽 and 𝐽𝑆𝐶 for all
object densities. For medium and low object density, MD-BS 2 performs
best for 𝐽𝑆𝐶𝜃 , and for high object density it performs best for 𝛼.
Further, MD-BS 2 obtains better results for 𝛽 and 𝐽𝑆𝐶 than Methods 5,
1, and 2 for all object densities. MD-BS 1 yields improved results for 𝛼,
𝛽, and 𝐽𝑆𝐶𝜃 compared to SMS-PDAE for all object densities.

Table A.1
Tracking performance for all object densities for SNR = 1 for the Particle Tracking
Challenge data.

Metric 𝛼 𝛽 𝐽𝑆𝐶𝜃 𝐽𝑆𝐶 𝑅𝑀𝑆𝐸

Low

Method 5 0.211 0.112 0.185 0.179 2.119
Method 1 0.022 0.018 0.115 0.024 1.568
Method 2 0.175 0.104 0.281 0.178 2.423
SMS-PDAE 0.213 0.130 0.222 0.206 2.093
MD-BS 1 0.225 0.128 0.205 0.202 2.098
MD-BS 2 0.222 0.123 0.202 0.200 2.173

Medium

Method 5 0.162 0.142 0.458 0.225 2.172
Method 1 0.027 0.026 0.300 0.034 1.533
Method 2 0.198 0.111 0.335 0.192 2.386
SMS-PDAE 0.171 0.152 0.460 0.239 2.083
MD-BS 1 0.180 0.152 0.438 0.240 2.130
MD-BS 2 0.198 0.157 0.440 0.269 2.387

High

Method 5 0.136 0.120 0.460 0.198 2.296
Method 1 0.091 0.064 0.231 0.089 1.859
Method 2 0.163 0.080 0.324 0.147 2.531
SMS-PDAE 0.147 0.133 0.464 0.218 2.243
MD-BS 1 0.159 0.134 0.459 0.227 2.362
MD-BS 2 0.181 0.127 0.410 0.223 2.453
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Table A.2
Tracking performance for all object densities for SNR = 2 for the Particle Tracking
Challenge data.

Metric 𝛼 𝛽 𝐽𝑆𝐶𝜃 𝐽𝑆𝐶 𝑅𝑀𝑆𝐸

Low

Method 5 0.652 0.590 0.763 0.717 1.118
Method 1 0.225 0.155 0.232 0.178 0.796
Method 2 0.661 0.607 0.792 0.742 1.219
SMS-PDAE 0.668 0.612 0.777 0.724 0.991
MD-BS 1 0.673 0.613 0.778 0.772 0.982
MD-BS 2 0.671 0.625 0.793 0.777 1.198

Medium

Method 5 0.448 0.391 0.664 0.489 1.325
Method 1 0.398 0.298 0.411 0.340 0.840
Method 2 0.517 0.417 0.629 0.510 1.254
SMS-PDAE 0.461 0.402 0.659 0.492 1.226
MD-BS 1 0.501 0.429 0.682 0.520 1.237
MD-BS 2 0.505 0.440 0.706 0.553 1.301

High

Method 5 0.353 0.295 0.607 0.382 1.484
Method 1 0.294 0.217 0.379 0.256 1.088
Method 2 0.356 0.249 0.515 0.331 1.582
SMS-PDAE 0.365 0.299 0.577 0.378 1.405
MD-BS 1 0.368 0.303 0.591 0.385 1.362
MD-BS 2 0.380 0.305 0.587 0.401 1.488
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