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Abstract 
      Replication of the entire genome during S-phase is 
one of the most important cell cycle events and 
requires the coordinated activity of a multitude of 
different enzymes. Proliferating cell nuclear antigen 
(PCNA) interacts directly and indirectly with most of 
these proteins and thereby plays a leading part in the 
coordination of the replication process. PCNA is the 
processivity factor for the replicative DNA 
polymerases and the loading platform for additional 
proteins in DNA replication and repair. In the current 
review, we present an overview of the diverse PCNA 
functions in the context of a detailed description of 
eukaryotic DNA replication. Its essential role in DNA 
synthesis  also  makes  PCNA  a  central  factor     of cell
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cycle control mechanisms. Fluorescent PCNA fusion proteins have been used 
to label sites of DNA replication and found a wide application as S-phase and 
cell cycle markers for live cell microscopy. These analyses of the dynamics and 
progression of DNA replication in living cells have shed new light on current 
models of S-phase progression. 
  
Introduction 
 Once upon a time a small nuclear acidic protein was independently 
identified in proliferating cells with an antibody found in the autoimmune 
disease systemic lupus erythematosus (SLE) and called “proliferating cell 
nuclear antigen” (PCNA) [1] as well as by two-dimensional gel electrophoresis 
as cycling protein and hence termed “cyclin” [2]. A series of studies on growth 
regulation and cellular transformation ensued. The protein level of the acidic 
36 kDa nuclear protein cyclin was found to fluctuate during the cell cycle, in 
particular during DNA synthesis and the SLE antibody reactive protein was 
only detected in proliferative or tumor cells but not in quiescence cultures. A 
few years later, these supposedly different proteins were shown to be one and 
the same henceforth known as PCNA [3]. Still the story was not to end here 
and some time later PCNA was found to be identical to the DNA polymerase δ 
auxiliary factor required for enzyme processivity during the elongation stage of 
replicative DNA synthesis [4, 5]. PCNA was subsequently shown to share 
structural and functional similarity to the prokaryotic processivity factors β-
subunit of DNA polymerase III and gene 45 product of bacteriophage T4. The 
crystal structure of human PCNA [6] showed a homotrimeric ring form with a 
central channel surrounded by basic residues and large enough to fit the DNA. 
In addition, PCNA is often referred to as the DNA polymerase clamp as it 
encircles the DNA and thereby tethers the associated polymerase to the 
template. Its intimate relationship with DNA replication was independently 
ascertained by cell biological studies, where PCNA was shown to change its 
subnuclear distribution during S-phase of the cell cycle [7]. Subsequently, 
PCNA distribution during S-phase was shown to coincide with active sites of 
DNA synthesis as determined by the incorporation of nucleotides [8, 9]. The 
role of PCNA in the replication of genetic information is the focus of this 
chapter. 
 
Loading of PCNA to the replication fork 
 The first steps after unwinding of the DNA by the replicative helicase are 
made by the DNA polymerase α/primase complex [10-14] synthesizing a 
complementary ~12 nucleotide RNA primer, which is then extended with ~20 
bases of DNA [15, 16]. The ability to initiate DNA synthesis is a unique 
feature of the DNA pol α/primase complex. DNA pol α consists of four 
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subunits [17], with the polymerase activity localized in the largest subunit 
(p180) and primase activity shared between the two small subunits (p48 and 
p58) (reviewed in [18]). The single strand binding heterotrimer replication 
protein A (RPA) acts as an auxiliary factor or fidelity clamp by stabilizing the 
pol α/primase complex and reducing the misincorporation efficiency [19]. 
After the RNA-DNA primer has reached the critical length of 30 nucleotides, 
replication factor C (RFC) binds to the 3´-OH end of the RNA-DNA primer, 
inhibits and displaces the DNA pol α/primase complex [20-22]. RFC is the so-
called “clamp loader” for PCNA. RFC is a heteropentameric complex 
consisting of one large (p140) and four smaller subunits (p40, p38, p37, and 
p36), which share considerable sequence similarity with each other [23] and 
are conserved in all eukaryotes. The p140 subunit contains two evolutionarily 
conserved domains. The first is also conserved among prokaryotic ligases and 
interacts with double-stranded DNA, while the second, conserved between the 
smaller RFC subunits, forms the interaction surface with PCNA [24, 25]. From 
the crystal structure of the RFC/PCNA complex it is now evident that the main 
RFC/PCNA contacts occur through the p140 and the p38 subunit; while p140 
interacts extensively with PCNA, p38 only seems to be partially engaged [26]. 
PCNA itself does not have any DNA-binding activity, but is in a strictly ATP-
dependent manner loaded by RFC onto the DNA [27-30]. The RFC catalyzed 
PCNA loading is the prerequisite for the assembly of pol δ as well as pol ε 
onto the DNA to form a processive holoenzyme, which then extends the RNA-
DNA primer. In the absence of ATP, RFC has a closed two-finger structure 
also termed U-form. Upon the addition of ATP the RFC pentamer opens up to 
the so-called C-form. PCNA can be held between the two fingers of the U-
form and the structural internal change to the open C-form opens up the PCNA 
ring so that it can encircle the DNA [31]. To close the PCNA ring around the 
DNA, ATP hydrolysis is again required [20]. It is not clear, whether RFC 
dissociates from PCNA after loading or they both form together with pol δ the 
so-called holoenzyme. Using gelfiltration it was found that RFC dissociated 
after loading of PCNA and hence the holoenzyme consists only of pol δ and 
PCNA [32]. Whether RFC can also efficiently unload the PCNA either during 
or after completion of DNA replication is still under debate. In model 
loading/unloading systems, human RFC has been shown to unload PCNA from 
template-primer DNA in an ATP-dependent reaction [33, 34]. The p140 
subunit of RFC is exchanged in specific situations by related, RFC-like 
proteins. If Chl12 (also termed Ctf18), which is involved in sister chromatid 
cohesion substitutes p140 this modified RFC complex can still upload PCNA 
[35, 36] but the regulated unloading of PCNA by Ctf18-RFC may serve an 
important function during the establishment of sister chromatid cohesion [37]. 
Another RFCp140-like protein, Rad17, preferentially binds primed single-
stranded DNA and gapped DNA and is therefore thought to play a role in the 
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maintenance of genomic stability. A checkpoint sliding clamp-loader model 
for lesion recognition has been proposed [38]. 
 
Loading of the replication polymerases 
 The initiation complex pol α/primase is not capable of processive DNA 
synthesis and dissociates from the template DNA after primer synthesis. The 
processive polymerase for the elongation step of DNA replication is pol δ, 
which is loaded in a process called “polymerase switch” [21, 22, 39]. The 
mammalian pol δ is a heterotetramer consisting of one catalytic subunit 
holding the polymerase and proofreading 3´-5´ exonuclease activity (p125) 
and three additional subunits p66, p50 and p12 [40-42]. In the absence of 
PCNA, pol δ is a relatively non-processive polymerase, while together with 
PCNA as a processivity factor, the activity and processivity of pol δ 
increases up to 100-fold [5, 43-45]. PCNA is thought to tether pol δ onto the 
DNA and thereby prevents the dissociation of the polymerase as it extends 
the primer [46]. Due to their association with the trimeric PCNA ring these 
pols become highly processive, which justifies the names “polymerase 
clamp” or “processivity factor for DNA pol” used commonly to refer to 
PCNA. Structurally, the PCNA clamp is positioned behind the pol δ during 
DNA synthesis [47]. 
 In addition to pol δ, pol ε might be involved in the processive 
elongation. Pol ε is also loaded by PCNA [48]. However, pol ε is already 
very processive in the absence of PCNA, and the precise roles of pol ε and 
pol δ during the synthesis of the leading and the lagging strand are not yet 
identified. Genetic and biochemical evidence suggests that lagging strand 
synthesis is carried out by pol α and pol δ (reviewed in [49]). 
Immunodepletion analysis suggested that pol δ is essential for lagging 
strand synthesis and that this function cannot be substituted by pol ε [50]. 
The human pol ε has four subunits, a large catalytic subunit, p261, and 
three associated subunits, p59, p12, and p17 [51]. Neutralizing antibodies 
against human pol ε inhibited the chromosomal replication when 
microinjected into human fibroblasts [52]. Pol ε is localized to distinct 
nuclear foci throughout the entire cell cycle. Early in S-phase, pol ε foci 
did not colocalize with PCNA and newly replicated DNA but were adjacent 
to each other. However, pol ε foci did colocalize with PCNA foci later in 
S-phase, suggesting that pol ε might participate with PCNA in DNA 
replication only late in S-phase. This indicated that pol ε might not be 
involved in replication but might prepare heterochromatin for replication 
[53]. Pol ε interacts with proteins of the DNA damage checkpoint 
machinery [54] and could therefore be involved in checkpoint control of 
the replicated DNA.  
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Leading and lagging strand synthesis  
 While the replication of the leading strand by the pol δ holoenzyme is 
processive and continuous for at least 5-10 kb, the DNA synthesis of the 
lagging strand continues only until the polymerase encounters the RNA-DNA 
primer of the previously replicated DNA fragment. These small DNA pieces 
are about 180-200 bp in size and are called Okazaki fragments. PCNA is 
supposed to be the central player in this task functioning as a loading platform, 
which coordinates the proteins involved in the many steps of DNA replication, 
DNA repair as well as DNA translesion synthesis (TLS) [55, 56]. Among these 
proteins are Flap endonuclease 1 (Fen1; [57]), DNA Ligase I [58], Dnmt1 [59], 
DNA Topoisomerase I and IIa [60], p21 [61], cyclin D [62], cyclin A [8], 
nucleotide excision repair protein XPG [63], mismatch repair proteins MLH1 
and MSH2 [64], TLS polymerases (reviewed in [65]) as well as chromatin 
assembly factor CAF-1 [66] and histone modifier HDAC1 [67]. Among these 
proteins, p21 might be a control switch from one PCNA-dependent function to 
another at the DNA replication fork as it interferes with the interactions 
between PCNA and Fen1, Dnmt1 and DNA Ligase I [58, 59, 68].  

 

 Another unsolved problem is derived from the directionality of the 
polymerases during replication. To achieve identical directionality of the 
polymerases on the leading and lagging strand, a dimerization of pol δ and a 
loop back of the lagging strand was proposed [69]. In this way, the 
coordination of the leading and lagging strand synthesis in establishing an 
asymmetric replication fork would be simplified. Alternatively association of 
pol α/primase to one of the two halves of the dimeric pol δ could also occur 
[70]. Figure 1 shows a schematic representation of one half of the asymmetric 
replication fork. The synthesis of the lagging strand is very complex, as the 
replication of each Okazaki fragment has to be initiated and continued with the 
pol δ holoenzyme. In a process termed maturation of Okazaki fragments the 
RNA-DNA primer is removed, the DNA gap filled and the DNA fragments 
sealed. The current model for Okazaki fragment processing suggests that the 
pol δ holoenzyme polymerizes until it meets the 5´ end of the RNA-DNA 
primer of the previous Okazaki fragment. Then the holoenzyme invades the 
fragment and thereby displaces the primer, making the DNA again single-
stranded. In this process, PCNA ensures processivity while RPA ensures that 
this primer displacement process only goes on for 30 nucleotides. RPA, which 
needs 30 nucleotides to bind efficiently to ssDNA [71, 72] immediately covers 
the now so-called flap and recruits Dna2, an endonuclease. This would mean 
that per Okazaki fragment one flap is generated which would then be bound by 
one RPA trimer. Dna2 possesses DNA unwinding as well as a single    
stranded endonuclease activity [73, 74], but for the complete removal of the 
RNA primer, the combined action of the two  endonucleases Dna2  and Fen1  is  
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Figure 1. The mammalian DNA replication fork. Schematic illustration of one half of 
the mammalian replication fork depicting the major proteins involved in the process of 
DNA replication. The helicase (H) unwinds the DNA and the ssDNA is covered by 
RPA. The DNA polymerase α/primase complex (α) synthesizes a RNA-DNA primer 
(ΛΛΛ). The clamp loader RFC (R) loads the clamp PCNA (P) that then recruits DNA 
polymerase δ (δ). At the lagging strand the Okazaki fragments are then processed by 
Fen1 (F) and DNA Ligase I (L). 
 
needed [75, 76]. Dna2 cleaves the RNA containing portion of the RNA-DNA 
primer. Fen1, which is loaded by interaction with PCNA, processes the 
remaining DNA flap product while DNA Ligase I seals the resulting nick in 
the DNA (reviewed in [77]).  
 As there are only three binding sites in the interdomain connecting 
loop per PCNA ring available, the timing, order and duration of each 
binding is very important [78]. A ‘toolbelt’ model has been proposed, in 
which the PCNA trimer can simultaneously bind three different 
replication proteins [65]. The crystal structure of human DNA Ligase I 
has recently been solved and shows DNA Ligase I encircling the DNA 
while sealing the nicked DNA fragments. This would mean that DNA 
Ligase I would effectively mask all three protein binding sites on the 
PCNA trimer, thereby excluding other proteins from binding the clamp 
[79]. From several structural studies on the conformational change within 
the Fen1 protein during the actual flap cleavage it has been concluded 
that Fen1 also encircles the DNA [80-82]. The structure of the full-length 
Fen1 and PCNA complex showed that – in contrast to DNA Ligase I - 
each subunit of the PCNA trimer is bound to a single Fen1 molecule [83]. 



PCNA and replication 57 

This would mean that instead of Fen1 and DNA Ligase I both binding 
PCNA simultaneously during Okazaki fragment maturation, Fen1 would 
need to be dislodged from PCNA in order for DNA Ligase I to interact 
with the clamp [84]. These findings might suggest that for enzymatic 
action only one protein is bound to the PCNA trimer at a time. This is in 
agreement with the results of immunoprecipitation studies, suggesting 
that different pools of PCNA associated to RF exist. For example, 
binding of pol δ and DNA Ligase I was mutually exclusive [85]. A model 
of the replication and maturation of Okazaki fragments is shown in 
Figure 2. 
 

 
 
Figure 2. Sequential steps of Okazaki fragment maturation. Due to the polarity of the 
DNA synthesis reaction, the replication of the lagging strand is discontinuous. Based on 
data from double photobleaching analysis, it is proposed that PCNA is stably bound and 
reused for the replication of several Okazaki fragments while polymerase δ and the 
maturation proteins Fen1 and DNA Ligase I are loaded once per Okazaki fragment. A 
schematic representation of a double FRAP experiment (photobleached region marked 
by a square and an arrow indicating the laser beam) on a cell with GFP-PCNA and 
RFP-Ligase I. Double labelled replication foci (merge of green and red is shown in 
yellow) exchange Ligase I in a matter of seconds while PCNA does not. This 
experiment among others indicated the different dynamic properties of proteins 
involved in DNA replication and the function of PCNA as a stable loading platform for 
the loading of Okazaki fragment maturation proteins. 
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The structure of a replication focus and the 
regulation of PCNA subnuclear distribution 
 DNA replication occurs at discrete nuclear foci as has been demonstrated by 
the visualization of the incorporation of modified nucleotides [86-90]. These foci 
have been termed replication foci (RF), the subnuclear sites of ongoing DNA 
replication. Morphologically one focus includes many active replisomes 
consisting of enzymes and auxiliary factors involved in the duplication of the 
genome at one origin [91-93]. The S-phase has been subdivided according to the 
temporal-spatial patterns of the RF into three main stages: early, mid and late S-
phase [88]. While in early S-phase the RF are small and uniform in size, in mid 
and late S-phase the size of the microscopically resolved RF is increased albeit 
not uniformly and their number is reduced. With deconvolution microscopy as 
well as thin sectioning electron microscopic analysis, these large foci in mid and 
late S-phase were shown to be composed of many small discrete RF of possible 
identical size to the ones in early S-phase [94, 95]. 
 As for the incorporation of modified nucleotides, three different patterns of 
PCNA immunofluorescence staining have been identified in S-phase cells 
corresponding to the part of the genome being replicated [8, 96-98]. Figure 3 
shows the       localization of GFP-PCNA  in a mouse myoblast cell line   during the  
 

 
 
Figure 3. The progression of DNA replication throughout S-phase: the upper panel 
shows a schematic representation of early, mid and late replication patterns of 
mammalian cells. In the lower panel corresponding single confocal sections of mouse 
myoblast cells with GFP-PCNA labelled replication foci are shown. Scale Bar, 5 µm. 
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different stages of S-phase. At the start of S-phase, PCNA becomes resistant to 
extraction from nuclei with detergents, for example Triton X-100, while in 
non-S-phase cells PCNA is easily extractable [7]. The level of PCNA reflects 
the proliferative state of the cell. Most G0/G1 cells do not express significant 
amounts of PCNA while there is a clear increase in late G1 and a doubling of 
the PCNA in S-G2 phase [99]. It had been suggested that phosphorylation of 
PCNA is responsible for the changes in the nuclear localization [3] but 2D gels 
showed that PCNA is not phosphorylated or otherwise posttranslationally 
modified in a way that affects the charge of the protein [100]. 
 Under normal growth conditions SUMO and ubiquitin modification of 
PCNA have not yet been identified. However, in response to DNA damage the 
highly conserved residue K164 is mono-ubiquitinated or modified by SUMO 
[101]. This residue is not involved in the interaction of PCNA with PCNA-
binding proteins (reviewed in [102]). SUMO is an ubiquitin-related protein 
that regulates protein-protein interactions and possibly antagonizes 
ubiquitination through competition for similar lysine residues in substrates 
[103]. SUMO modification of PCNA inhibits its ubiquitination and the DNA 
repair functions. Monoubiquitinated PCNA displays the same replicative 
functions as unmodified PCNA, but it specifically interacts with the translesion 
synthesis (TLS) polymerases, needed for replication across DNA lesions [104]. 
This suggested that ubiquitination increased the functionality of PCNA as a 
sliding clamp promoting mutagenic DNA replication [105]. It has also been 
shown that PCNA, which is mutated at K164 can load to replication sites but 
not to repair sites [106]. 
 
Mobility and turnover of replication proteins at RF 
 Using DNA double pulse-labeling experiments to mark DNA fragments, 
which are replicated at consecutive time points, it was suggested that the newly 
replicated DNA gradually moves away from their site of replication [107, 
108]. In these experiments though only the replicated DNA was visualized and 
therefore it was not clear whether only the DNA, only the replication 
machinery or both entities were moving [108]. Different approaches and 
techniques have been trying to solve this problem since then. With the usage of 
GFP-PCNA in living cells, it was found that although the pattern of nuclear RF 
undergoes defined changes during the progression of S-phase, the individual 
foci do not show directional movements, merge or divide. In addition, the RFs 
are heterogeneous in size and lifetime. Furthermore, the assembly and 
disassembly of RF patterns are gradual and coordinated but asynchronous 
through S-phase [95]. Time lapse microscopy followed by overlay of the 
fluorescent PCNA patterns over time revealed that new RF assembled adjacent 
to previous ones by an indirect mechanism, termed domino effect [109]. 
Further comparing the localization of labeled nucleotides with GFP-PCNA 
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revealed that the separation of nascent DNA and the replication machinery was 
caused by the appearance of GFP-PCNA at RF positions adjacent to previous 
RF during S-phase progression [109, 110].  
 With PCNA supposed to be the loading platform for the proteins involved 
in the elongation of DNA replication and in the maturation of Okazaki 
fragments, the question of the relative mobility and dynamics of the individual 
proteins involved in these processes arises. In non S-phase cells, PCNA 
diffuses through the nucleoplasm at a rate comparable to GFP alone, but gets 
transiently immobilized at RF during S-phase with a very low exchange rate in 
and out of these structures [109]. For S-phase cells, different models have been 
discussed for the dynamic behavior of PCNA: i) the PCNA ring stays stably 
bound during lagging strand synthesis together with a dimeric pol δ; ii) PCNA 
is recycled within an RF; or iii) a new PCNA ring is loaded for each new 
Okazaki fragment [109]. In order to clarify that, several points have to be 
considered. The length of an Okazaki fragment is ~ 180-200 nucleotides. With 
a replication fork progression in mammalian cells of an average rate of about 
1.7 kb per minute [93] that means that it takes 6-7 s for the synthesis of one 
Okazaki fragment. In one minute about 10 Okazaki fragments would be 
synthesized, which requires the loading of about 30 PCNA molecules per 
minute, if a new PCNA ring is loaded at each Okazaki fragment. Estimates in 
mammalian cells suggest an average of 5 replicons per RF corresponding to 10 
replication forks [93, 111], one would expect the loading of 300 PCNA 
molecules per minute at each replication focus [109]. 

 

 Using fluorescence recovery after photobleaching (FRAP), PCNA was 
found stably bound at RFs with a turnover in the order of minutes within the 
same cells and foci. This suggested that PCNA remained associated with the 
replication machinery for multiple rounds of Okazaki fragment maturation 
[109]. This behavior is in contrast to proteins involved in initiation of DNA 
replication as RPA34, where a very rapid fluorescence recovery at RF within 
seconds after photobleaching was observed [109]. Older models had suggested 
that Ligase I or Fen1 and PCNA were loaded onto the replicating DNA as a 
stable complex with a 1:1 stoichiometry [112] and thus would have to remain 
associated with replication sites for a similar time period. To directly test the 
dynamics of PCNA and PCNA binding Okazaki fragment proteins (DNA 
Ligase I and Fen1), double FRAP experiments were performed with 
simultaneous measurements of exchange rates of the different proteins. A very 
fast and complete exchange of DNA Ligase I and Fen1 within a few seconds 
after the bleach was detected suggesting that these factors and PCNA are 
independently loaded at the replication fork and stay for different times. The 
data is consistent with a model, where PCNA stays at one RF throughout the 
synthesis of several Okazaki fragments, while DNA Ligase I and Fen1 
exchange after each fragment [113].  
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Models of mammalian DNA replication progression 
 There are approximately 4x104 origins of DNA replication in a 
mammalian cell nucleus, which have to fire once during each round of 
replication. This number corresponds to the initiation events on the leading 
strand, while for the lagging strand - due to the discontinuous synthesis of the 
Okazaki fragments - there are approximately 2-3x107 initiation events in 
mammalian cells [70]. One important and still very unclear feature of DNA 
replication is how the replication of the genome progresses throughout S-
phase. Are these origins of replication activated according to a specific 
program, which means that every origin “knows” when it will be replicated 
(clock model)? Or is the progression of replication self propagating whereby 
after replication is initiated at specific origins it continues by a domino effect-
like mode to trigger the replication of their neighboring origins (domino 
model)? There are several requirements for a program controlling the 
replication-timing: (i) labels to indicate that origins are early, mid or late, (ii) 
factors that recognize these labels and activate the origins according to the S-
phase stage and (iii) a checkpoint system that ensures that everything is 
replicated at the right time (reviewed and discussed in [114]). A domino model 
would require (i) a way to indicate the early replicating origins, (ii) a method 
of activating the “next-in-line” origins and (iii) a checkpoint system ensuring 
that everything is replicated only once during S-phase. 
 It is generally accepted and directly tested at the genome level that the 
transcriptionally active domains replicate early while the inactive and highly 
repetitive parts replicate late ([115-118]; recent progress is reviewed in [119]). 
This has been recently visualized further with histone methylation (m) on 
lysine 9 (K9) of histone 3 (H3) during DNA replication: H3K9m1 was largely 
restricted to early RF, H3K9m2 was the predominant colocalized with mid S-
phase RF while H3K9m3 marked the late-replicating RF [120]. RFs, which 
were marked by pulse-chase with nucleotide analogues were maintained at 
subsequent cell cycle stages and cell cycles [93, 111, 121, 122] arguing for the 
maintenance of “replicative units”. Synchronized cells pulse-labeled with two 
different nucleotide analogues at the very beginning of two consecutive S-
phases, showed a high degree of colocalization for genomic regions first 
replicated during S-phase [93, 111]. These results argue for replicative units, 
which stably maintain their replication timing during S-phase. Epigenetic 
marks might be involved in controlling replication timing in general and/or 
determining the early firing origins [123-125]. Further evidence is required to 
determine whether the later replicating origins are predetermined (clock 
model) or result from the propagation of the replication “wave” from the 
earlier sites (domino model) [109, 126]. 
 It is generally assumed that the minichromosome maintenance proteins 
(Mcm) 2-7 form a complex at origins in G1-phase licensing the DNA for 
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replication. They are thought to be continuously displaced from the freshly 
replicated DNA ensuring thereby that every piece of DNA is only replicated 
once per S-phase (reviewed in [127]). Recently, also PCNA was suggested to 
play a role in the mechanisms that limit DNA replication to one round per cell 
cycle. The ubiquitin-mediated destruction of Cdt1, another potential 
replication-licensing factor, requires the interaction with chromatin-bound 
PCNA [128-130]. However none of these findings argue exclusively for one 
model or the other but provide a mechanism in both cases for limiting 
replication of each genomic region to once per cell cycle.  
 Combined photobleaching and time overlay analysis of cells stably 
expressing GFP-PCNA, showed that new RFs assemble de novo at sites 
directly located next to the previously firing RFs. These results rule out a 
simple sliding or jumping of the replication elongation machinery to adjacent 
origin clusters and argues for an indirect mechanism of origin activation 
consistent with the domino model. This would mean that the activation of the 
first origin clusters would start a chain reaction leading to the activation of 
later origin clusters depending on the relative spatial distribution of the 
genome within the nucleus. This would then create a self-propagating system, 
maintaining the same temporal order of replication over cell generations 
provided the same initial sites would be used [109, 113]. This striking 
adjacency of the replication sites over S-phase is not expected to occur 
predictably from the clock model (Figure 4). The DNA replication itself has an 
influence on the chromatin remodeling, as the replication machinery needs 
access to the entire genome. Furthermore, it has been indirectly demonstrated 
in vivo that     large-scale chromatin decondensation     occurs before,  or coincident 
 

 
 
Figure 4. Models for the propagation of DNA replication throughout the genome. 
Schematic illustration of the two principal models of S-phase progression; the domino 
model and the clock model. According to the domino model early replication origins 
are epigenetically determined and their firing leads to the sequential and preferential 
activation of adjacent replicon arrays. This model predicts that subsequent replication 
foci form adjacent to previously firing ones. According to the clock model early, mid 
and late replicating origins are marked specifically and are set to replicate at specific 
times during S-phase. 
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with S-phase [131]. CDC45, a protein involved in the initiation of replication 
promotes, if targeted to specific chromatin sites, a dramatic decondensation of 
chromatin in the targeted region [132]. Future experiments should test the role 
of locally induced decondensation in determining the progression of genome 
replication. 
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